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The classic law of nonstationary filtration in a porous medium is Darcy's law, in 
which it is assumed that the pressure gradient and the velocity instantaneously reach an 
equilibrium state. Actually "equilibrium" is reached after some delay, and, in order to 
consider this phenomenon in rheological equations, the velocity v and the pressure p are 
replaced by v + %v dv/dt and p + Xp dp/dt, where I v > 0 is the velocity lag time and lp > 
0 is the pressure relaxation time. The physical meaning of this substitution is that after 
instantaneous removal of the pressure drop, the motion does not stop instantaneously, but 
dies out in time as exp(-t/lv). If the motion is stopped instantaneously, the pressure 
decays in time as exp(-t/Xp). The breakdown of "equilibrium" relationships between the 
filtration velocity and the pressure gradient can be explained by relaxation effects, which 
result from a) the inertia of the fluid and the lag of the velocity from the pressure gradi- 
ent; b) the relaxation of the pressure and the lag of the pressure gradient from the velo- 
city; c) the complexity of the structure (cracks, caverns, etc.) and the dissipative proper- 
ties of the porous media; and d) micrononuniformity in the components of the porous media, 
etc. [i]. 

The study of filtration processes for non-Newtonian petroleum, polymer solutions, 
mixtures, emulsions, etc. require explanation of various relaxation effects. In this 
article the problem of nonstationary filtration in a porous body is examined by using a 
generalized Darcy's law, in which it is assumed that the equilibrium state between the 
filtration velocity and the pressure gradient is reached after some delay [I]. Here the 
pressure relaxation time Xp.iS a function of the rate of change of the pressure ~p/St. 
Conditions are found that glve a finite propagation velocity for perturbations and that 
localize boundary regimes with singularities. An example is constructed which shows that, 
however small ~p, the functional dependence Ip = i(dp/dt) leads to an effective localiza- 
tion of the boundary regime with singularities (the LS-regime [2]). 

i. If the delay phenomena are considered in the linear approximation, the classical 
Darcy's law is replaced by 

v+~ av k a( op) 
at ~ ax p + ~P-ff ' (1.1) 

where k > 0 is the permeability of the porous medium and ~ > 0 is the viscosity of the 
filtering fluid [i, 3]. Viscous elastic Oldroyd fluids of first order [4, 5] satisfy an 
analogous rheological equation. The relaxation filtration law (i.I) also describes the 
filtration of a condensed compressive fluid in porous-crack and cavernous media [6]. 

We assume that the relaxation time l D is a function of the rate of change of the pres- 
sure; that is, 1 D = X(~p/~t), where X(u) Is a continuous function for u e R l, %(0) = 0, 
%(u) > 0, and I'(h) is continuous for u ~ 0. It has been established that, however small 
I(u), effects are observed which are absent in the linear case. 

According to the assumptions of elastic theory [3, 6], (i.I) leads to a nonlinear 
equation for relaxation filtration: 

a--f +~--• p + ~\~fjTY/' (1.2) 

where < > 0 is a known number, which depends on the properties of both the porous medium 
and the filtering fluid. 
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Equation (1.2) is examined in the region ~ ~ [0; ~) • [0; T), 0 < T <_ ~. There is also 
a physical meaning to the generalized solution p(x, t) which is continuous and has continu- 

o (  :<~,,. ap, 
ous derivatives 8p/St and P+~:'(-~f):~--~]" 

2. We will study the question of a finite propagation rate of perturbations of the 
processes described by (1.2). As is known, Eq. (1.2) does not have such a property for 
X = const, and initial or boundary perturbations with an infinite velocity [7]. 

Let the following condition be fulfilled 

~i[~ f ~' (~ + ~ (q) 
]1/2 dq < co. 

�9 ( ~ '  (~) + ~ (~)) d~] (2.1) 

In this case the following function makes sense 

(~) = i 
0 

n~' 01) + B (~) 
[ !  (~2U (~)+ ~ (~))d~]~/2 dq, u>~0, c~(o) = o. 

We will construct a particular self-similar running-wave solution of (1.2) 

Y~ t--x>~O. p (x, t) = / (~), ~ = 

We substitute this function into (1.2) and find 
r t t ir 

]1 = •  , ( 2 . 2 )  

where f l  = JK/kvf-  The n o n l i n e a r  o r d i n a r y  d i f f e r e n t i a l  equa t ion  of t h i r d  o rde r  (2 .2)  i s  
e q u i v a l e n t  to the  fo l l owing  system of t h r e e  f i r s t - o r d e r  equa t ions :  

t t 

/ ~ = g ,  z(%(g) g ) ' = g l ,  g l = g .  ( 2 . 3 )  

From the first and third Eq. (2.3), we obtain 

• gd(k(g)g) = gldgl. (2 .4)  

I f  we i n t e g r a t e  (2 .4 )  and a l so  no te  t h a t  fo r  g = 0 and gz = K[~(g)g] '  = O, we have 

! 11/2 gl = V ~  ~1d(~1~(~))~ �9 

By substituting the last equation in the second equation of the system (2.3), we can write 

d (~ (g) g) ] /5  d~. 

[ !  nd (n~ (~))] j/2 = ~--~ (2 .5 )  

We integrate (2.5) and consider (2.1) to find 

V~ 

We set go = 0 and obtain 

g(~)=~-l(V~q~.~), o~<~<V~7~.~,, g(o)=o 
where ~, = ~(~) Finally, from the first equation of the system (2.3), considering that 

f(~) = /%v/~-fl(~), and f(0) = 0, we find 
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Fig. i Fig. 2 

/ (~) = V~-~ y ~-~ (V2~.~) dn, 0 ~< $ < V ~ .  ~,, / (0) = 0 
0 

We set the function f(~) to zero in the region {~ < 0}. 

f.(g) = ~-~.#-i(r are continuous. If 

Because ~-:(0) = O, then f($) and 

- : (n ~ '  00 + n~ (n)) dR 

then the  f u n c t i o n  [X( , / '~ / )%' f~) f ' ]  ~ i s  a l s o  con t inuous  fo r  0 <- ~ < , /~/2"~,  and remains so 
a f t e r  c o n t i n u a t i o n  i n to  t he  r e g i o n  {~ < 0}. 

Thus, we c o n s t r u c t  t he  g e n e r a l i z e d  s o l u t i o n  to  ( 1 . 2 ) :  

! V~--~ im-~(V~.~) a., 
P (x' t) = ! O ' x ; ]/r---~.t , 

O <~ x <~ V-Zff~. t ,  
(2 .6 )  

where g = r - x. It exists over a time 0 5 t < T, = /%v/2"#, 5 ~ and satisfies the 
following initial conditions on the boundary in ~: 

p(z, o) = o, @(,, o)/ot = O, o <~ x < oo; ( 2 . 7 )  

p(0, t ) = F ~ - ~  ~ r  dB, p(oo, t ) = 0 ,  O < ~ t < T , .  ( 2 . 8 )  
0 

Thus, Eq. ( 1 .2 )  has a s o l u t i o n  which i s  f i n i t e  a long x fo r  eve ry  t e [0; T , ) ;  p (x ,  t )  = 

0 for x _> /<]kv't. 

Example i. Let k(u) = lu[ n. It is easy to verify that the condition (2.1) is ful- 
filled for n > O, and the solution (2.6) takes the form 

~ F 
p(x, t )  [ /  n ~ -  L] /2x(n+t ) (n+2) - J  , O ~ x < ~ l / - ~ . t ,  ( o, x >~ V-~Tf~ . t, 0~<t<oo 

for the initial conditions (2.7) and the boundary conditions 

I nt .1 (n+2)/n 
p(o,o 1 / - : ~ + 1 )  l : ~ o c n  - - - g  -r-+:~ +t ) (~+~) . ]  , p(oo, t )=0 ,  

0 ~ t < z o .  
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For t > 0, p(x, t) has a bounded carrier [0; (K/X v "t], in which there is a convex 
function in x. 

3. Let ~, < ~ and  

.f 0 - ~  ('q) d~l = oo. 
0 (3.1) 

In this case the solution (2.6) exists along a bounded section to the time [0; T,] and, 
as can be seen from (2.8), p(0, t) + ~ for t § T, - 0; that is, we observe a boundary regime 
with singularities. However, in spite of that, perturbations are localized on a bounded 
section [0; x,], where x, = /K/--2"~, < ~. Moreover, a limiting pressure distribution exists 
at the moment of the singularity T,: 

! 

( x , T , ) = l V ~  ~ �9 -~(~)dn, o < ~ < ~ , ,  P 
I 0 

~0, x>~x, 

and p(x, T,) < ~ for x > 0. In the terminology of [2], this means that there is an LS 
regime with a singularity. 

Example 2. Let Kk(u) = ks(u) , where 

8 2 s l n ( l  + ~u) e3u 
~ ( u )  = 1 + ~  ,,(1 + ~ )  2(~ + ~ ) ~ '  u > 0 ,  ~ ( 0 )  = 0 ,  

where s > 0 is an  arbitrary number. Figure i shows the function X z for s = i. In this 
case Eq. (1.2) has a solution 

I V ~  --In  1-- T , - - x  - - s F - ~ t + - r  ' 
p (~, t) = / 

o ~< x <~ V~--~,,.t, 
o, x>~ V~-Ti-o.t ( 3 . 2 )  

for 0 ~ t < T, = s A graph of the function p(x, t) at various moments in time is 
shown in Fig. 2. The solution (3.2) satisfies the initial conditions (2.7) and the follow- 
ing boundary conditions: 

= V ~ - i n  I ~ t t, o < ~ t < r , ,  

p(oo,  t) = 0, 0 < ~ t < r , .  

As can be seen p(0, t) + ~ for t + T, - 0 and at the time of the singularity, the wave 
penetrates to a finite depth x, = s, and p(x, t) = 0 for x ~ x, and 0 ~ t ~ T,. Except 
for the point x = 0, the solution p(x, t) is uniform for t ~ [0; T,], and is bounded by 
the limiting curve p(x, T,) (Fig. 2): 

O, x~>e.  

It is not difficult to verify that lim %~(u) = 0 for any u ~ 0. Because of the choice 
8~0 

of ~, Fig. 1 shows that the function X can be set arbitrarily small, but in spite of that, 
the function k(Op/Ot) leads to the effect of a localization of the boundary regime with 
singularities. 

The author thanks A. Kh. Mirzadzhanzade for posing the problem and discussing the 
results. 
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FEATURES OF THE PRESSURE-ATTENUATION CURVE IN RELAXATION FILTRATION 

OF A FLUID 

O. Yu. Dinariev UDC 532.546 

Laboratory experiments have shown that, for fluid filtration processes with a charac- 
teristic fluctuation time of ~103 sec, theoretical predictions based on a model of the elas- 
tic regime can differ from observed quantities by an order of magnitude [1-3]. Therefore, 
in describing rapidly varying fluid filtration phenomena, the classic elastic equations 
[4, 5] must be avoided, and equations from the relaxation theory of filtration [6, 7] must 
be used instead, in particular, for the initial section of the pressure-attenuation curve. 
In earlier approximate formulas for the pressure-attenuation curve, the relaxation kernel 
had a somewhat special form [6]. The most general case [6] corresponds to a vibrating 
Fourier-type relaxation kernel in the form of a ratio of two second-order polynomials. In 
this work exact results are found for the initial section of the pressure-attenuation curve 
for an arbitrary kernel which is consistent with physical and thermodynamic requirements. 

i. We examine a homogeneous porous medium which is saturated with fluid. Isothermal 
processes are studied in which the fluid density O differs only slightly from some fixed 
value 00; therefore a linear expression can be used for the pressure 

P = Po -F E(p - -  P0)!P0. ( 1 . 1 )  

In  t h e  r e l a x a t i o n  t h e o r y  o f  f i l t r a t i o n  [6 ,  7 ] ,  D a r c y ' s  law i s  g e n e r a l i z e d  as f o l l o w s :  

+~ 

u(~,r)=--k~-* ~ K(t o- t )  VG(t,r)dt, G=p+p~.  (1.2) 

Here u is the filtration velocity; k is the permeability; �9 is the gravitational poten- 
tial; and ~ is the viscosity, which will be considered constant. The kernel K = K(t), which 
does not depend on the spatial coordinates, characterizes the internal relaxation processes 
in the system of the porous medium and the fluid. The function K = K(t) satisfies a series 
of conditions which follow from physical and thermodynamic considerations [2]: 
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